Loopy Substructural Local Search for the Bayesian Optimization Algorithm

This paper presents a local search method for the Bayesian optimization algorithm (BOA) based on the concepts of substructural neighborhoods and loopy belief propagation. The proba- bilistic model of BOA, which automatically identifies important problem substructures, is used to define … Continue reading

This paper presents a local search method for the Bayesian optimization algorithm (BOA) based on the concepts of substructural neighborhoods and loopy belief propagation. The proba- bilistic model of BOA, which automatically identifies important problem substructures, is used to define the topology of the neighborhoods explored in local search. On the other hand, belief propagation in graphical models is employed to find the most suitable configuration of conflicting substructures. The results show that performing loopy substructural local search (SLS) in BOA can dramatically reduce the number of generations necessary to converge to optimal solutions and thus provides substantial speedups.

Model Accuracy in the Bayesian Optimization Algorithm

Evolutionary algorithms (EAs) are particularly suited to solve problems for which there is not much information available. From this standpoint, estimation of distribution algorithms (EDAs), which guide the search by using probabilistic models of the population, have brought a new … Continue reading

Evolutionary algorithms (EAs) are particularly suited to solve problems for which there is not much information available. From this standpoint, estimation of distribution algorithms (EDAs), which guide the search by using probabilistic models of the population, have brought a new view to evolutionary computation. While solving a given problem with an EDA, the user has access to a set of models that reveal probabilistic dependencies between variables, an important source of information about the problem. However, as the complexity of the used models increases, the chance of overfitting and consequently reducing model interpretability, increases as well.This paper investigates the relationship between the probabilistic models learned by the Bayesian optimization algorithm (BOA) and the underlying problem structure. The purpose of the paper is threefold. First, model building in BOA is analyzed to understand how the problem structure is learned. Second, it is shown how the selection operator can lead to model overfitting in Bayesian EDAs. Third, the scoring metric that guides the search for an adequate model structure is modified to take into account the non-uniform distribution of the mating pool generated by tournament selection. Overall, this paper makes a contribution towards understanding and improving model accuracy in BOA, providing more interpretable models to assist efficiency enhancement techniques and human researchers.

Scaling eCGA Model Building via Data-Intensive Computing

This paper shows how the extended compact genetic algorithm can be scaled using data- intensive computing techniques such as MapReduce. Two different frameworks (Hadoop and MongoDB) are used to deploy MapReduce implementations of the compact and extended com- pact genetic … Continue reading

This paper shows how the extended compact genetic algorithm can be scaled using data- intensive computing techniques such as MapReduce. Two different frameworks (Hadoop and MongoDB) are used to deploy MapReduce implementations of the compact and extended com- pact genetic algorithms. Results show that both are good choices to deal with large-scale problems as they can scale with the number of commodity machines, as opposed to previous ef- forts with other techniques that either required specialized high-performance hardware or shared memory environments.

Scaling Genetic Algorithms using MapReduce

Below you may find the abstract to and the link to the technical report of the paper entitled “Scaling Genetic Algorithms using MapReduce” that will be presented at the Ninth International Conference on Intelligent Systems Design and Applications (ISDA) 2009 by Verma, A., LlorĂ , X., Campbell, R.H., Goldberg, D.E. next month. Abstract:Genetic algorithms(GAs) are increasingly […]

Related posts:

  1. Scaling eCGA Model Building via Data-Intensive Computing
  2. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre
  3. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre

Below you may find the abstract to and the link to the technical report of the paper entitled “Scaling Genetic Algorithms using MapReduce” that will be presented at the Ninth International Conference on Intelligent Systems Design and Applications (ISDA) 2009 by Verma, A., LlorĂ , X., Campbell, R.H., Goldberg, D.E. next month.

Abstract:Genetic algorithms(GAs) are increasingly being applied to large scale problems. The traditional MPI-based parallel GAs do not scale very well. MapReduce is a powerful abstraction developed by Google for making scalable and fault tolerant applications. In this paper, we mould genetic algorithms into the the MapReduce model. We describe the algorithm design and implementation of GAs on Hadoop, the open source implementation of MapReduce. Our experiments demonstrate the convergence and scalability upto 105 variable problems. Adding more resources would enable us to solve even larger problems without any changes in the algorithms and implementation.

The draft of the paper can be downloaded as IlliGAL TR. No. 2009007. For more information see the IlliGAL technical reports web site.

Related posts:

  1. Scaling eCGA Model Building via Data-Intensive Computing
  2. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre
  3. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre