Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems

Differential evolution is a powerful nature-inspired real-parameter optimization algorithm that has been successfully used to solve a number of hard optimization problems. It has been used to tackle both continuous and discrete optimization problems. T…

Differential evolution is a powerful nature-inspired real-parameter optimization algorithm that has been successfully used to solve a number of hard optimization problems. It has been used to tackle both continuous and discrete optimization problems. The application of a continuous method to discrete problems involves several challenges, including solution representation and search space–solution space mapping. In this work, we study random key encoding, a popular encoding scheme that is used to represent permutations in high-dimensional continuous spaces. We analyze the search space it constitutes, study its structure and properties, and introduce two novel modifications of the encoding. We investigate the proposed encoding strategies in the context of four variants of the differential evolution algorithm and demonstrate their usefulness for two widespread permutation problems: 1) the linear ordering problem and 2) the traveling salesman problem.

Genetic Programming With Niching for Uncertain Capacitated Arc Routing Problem

The uncertain capacitated arc routing problem is an important optimization problem with many real-world applications. Genetic programming is considered a promising hyper-heuristic technique to automatically evolve routing policies that can make effecti…

The uncertain capacitated arc routing problem is an important optimization problem with many real-world applications. Genetic programming is considered a promising hyper-heuristic technique to automatically evolve routing policies that can make effective real-time decisions in an uncertain environment. Most existing research on genetic programming hyper-heuristic for the uncertain capacitated arc routing problem only focused on the test performance aspect. As a result, the routing policies evolved by genetic programming are usually too large and complex, and hard to comprehend. To evolve effective, smaller, and simpler routing policies, this article proposes a novel genetic programming approach, which simplifies the routing policies during the evolutionary process using a niching technique. The simplified routing policies are stored in an external archive. We also developed new elitism, parent selection, and breeding schemes for generating offspring from the original population and the archive. The experimental results show that the newly proposed approach can achieve significantly better test performance than the current state-of-the-art genetic programming algorithms for the uncertain capacitated arc routing problem. The evolved routing policies are smaller, and thus potentially more interpretable.

Self-Adjusting Multitask Particle Swarm Optimization

Particle swarm optimization algorithm has become a promising approach in solving multitask optimization (MTO) problems since it can transfer knowledge with easy implementation and high searching efficiency. However, in the process of knowledge transfer…

Particle swarm optimization algorithm has become a promising approach in solving multitask optimization (MTO) problems since it can transfer knowledge with easy implementation and high searching efficiency. However, in the process of knowledge transfer, negative transfer is common because it is difficult to evaluate whether knowledge is effective for population evolution. Therefore, how to obtain and transfer the effective knowledge to curb the negative transfer is a challenging problem in MTO. To deal with this problem, a self-adjusting multitask particle swarm optimization (SA-MTPSO) algorithm is designed to improve the convergence performance in this article. First, a knowledge estimation metric, combining the decision space knowledge and the target space knowledge for each task, is designed to describe the effectiveness of knowledge. Then, the effective knowledge is obtained to promote the knowledge transfer process. Second, a self-adjusting knowledge transfer mechanism, based on the effective knowledge and the self-adjusting transfer method, is developed to achieve effective knowledge transfer. Then, the ineffective knowledge is removed to solve the negative transfer problem. Third, the convergence analysis is given to guarantee the effectiveness of the SA-MTPSO algorithm theoretically. Finally, the proposed algorithm is compared with some existing MTO algorithms. The results show that the performance of the proposed algorithm is superior to most algorithms on negative transfer suppression and convergence.