Applications of Learning Classifier Systems

This carefully edited book by Larry Bull brings together a fascinating selection of applications of Learning Classifier Systems (LCS). The book demonstrates the utility of this machine learning technique in recent real-world applications in such domains as data mining, modelling and optimization, and control. It shows how the LCS technique combines and exploits many Soft Computing approaches into a single coherent framework to produce an improved performance over other approaches.

Optimization for Engineering Design: Algorithms and Examples

From the author:Presents a number of traditional and nontraditional (genetic algorithms and simulated annealing) optimization techniques in an easy-to-understand step-by-step format. Algorithms are supported with numerical examples and computer codes. …

From the author:
Presents a number of traditional and nontraditional (genetic algorithms and simulated annealing) optimization techniques in an easy-to-understand step-by-step format. Algorithms are supported with numerical examples and computer codes. Note: This book is not available at Amazon.com.

Optimization for Engineering Design: Algorithms and Examples

From the author:Presents a number of traditional and nontraditional (genetic algorithms and simulated annealing) optimization techniques in an easy-to-understand step-by-step format. Algorithms are supported with numerical examples and computer codes. …

From the author:
Presents a number of traditional and nontraditional (genetic algorithms and simulated annealing) optimization techniques in an easy-to-understand step-by-step format. Algorithms are supported with numerical examples and computer codes. Note: This book is not available at Amazon.com.

Learning Classifier Systems : 5th International Workshop (IWLCS 2002)

This book constitutes the refereed proceedings of the 5th International Workshop on Learning Classifier Systems, IWLCS 2003, held in Granada, Spain in September 2003 in conjunction with PPSN VII. The 10 revised full papers presented together with a comprehensive bibliography on learning classifier systems were carefully reviewed and selected during two rounds of refereeing and improvement. All relevant issues in the area are addressed.

Strength or Accuracy: Credit Assignment in Learning Classifier Systems

Machine learning promises both to create machine intelligence and to shed light on natural intelligence. A fundamental issue for either endevour is that of credit assignment, which we can pose as follows: how can we credit individual components of a complex adaptive system for their often subtle effects on the world? For example, in a game of chess, how did each move (and the reasoning behind it) contribute to the outcome? This text studies aspects of credit assignment in learning classifier systems, which combine evolutionary algorithms with reinforcement learning methods to address a range of tasks from pattern classification to stochastic control to simulation of learning in animals. Credit assignment in classifier systems is complicated by two features: 1) their components are frequently modified by evolutionary search, and 2) components tend to interact. Classifier systems are re-examined from first principles and the result is, primarily, a formalization of learning in these systems, and a body of theory relating types of classifier systems, learning tasks, and credit assignment pathologies. Most significantly, it is shown that both of the main approaches have difficulties with certain tasks, which the other type does not. This book is written by Tim Kovacs.

Anticipatory Behavior in Adaptive Learning Systems

This book edited by Martin Butz, Olivier Sigaud, and Pierre Gérard addresses the interdisciplinary topic of anticipation, attracting attention from computer scientists, psychologists, philosophers, neuroscientists, and biologists is a rather new and often misunderstood matter of research. This book attempts to establish anticipation as a research topic and encourage further research and development work.

First, the book presents philosophical thoughts and concepts to stimulate the reader’s concern about the topic. Fundamental cognitive psychology experiments then confirm the existence of anticipatory behavior in animals and humans and outline a first framework of anticipatory learning and behavior. Next, several distinctions and frameworks of anticipatory processes are discussed, including first implementations of these concepts. Finally, several anticipatory systems and studies on anticipatory behavior are presented.

Data Mining and Knowledge Discovery with Evolutionary Algorithms

This book by Alex Freitas integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an area of active research.In general, data mining consists of extracting knowledge from data. In this book we particularly emphasize the importance of discovering comprehensible, interesting knowledge, which is potentially useful for the reader for intelligent decision making.In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.

Representations for Genetic and Evolutionary Algorithms

Book DescriptionIn the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies … Continue reading

Book Description
In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs’ performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs’ success.

Rothlauf, Franz.