SIGEVOlution Volume 4, Issue 1

The new issue of SIGEVOlution is now available for you to download from:
http://www.sigevolution.org

The issue features:

Computational Intelligence Marketing by Arthur Kordon

Pyevolve: a Python Open-Source Framework for Genetic Algorithms by Christian S. Perone

Calls & calendar

The newsletter is intended to be viewed electronically.
Pier Luca Lanzi (EIC)
Related Posts

The new issue of SIGEVOlution is now available for you to download from:

http://www.sigevolution.org

The issue features:

  • Computational Intelligence Marketing by Arthur Kordon
  • Pyevolve: a Python Open-Source Framework for Genetic Algorithms by Christian S. Perone
  • Calls & calendar

The newsletter is intended to be viewed electronically.

Pier Luca Lanzi (EIC)

Scaling Genetic Algorithms using MapReduce

Below you may find the abstract to and the link to the technical report of the paper entitled “Scaling Genetic Algorithms using MapReduce” that will be presented at the Ninth International Conference on Intelligent Systems Design and Applications (ISDA) 2009 by Verma, A., Llorà, X., Campbell, R.H., Goldberg, D.E. next month. Abstract:Genetic algorithms(GAs) are increasingly […]

Related posts:

  1. Scaling eCGA Model Building via Data-Intensive Computing
  2. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre
  3. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre

Below you may find the abstract to and the link to the technical report of the paper entitled “Scaling Genetic Algorithms using MapReduce” that will be presented at the Ninth International Conference on Intelligent Systems Design and Applications (ISDA) 2009 by Verma, A., Llorà, X., Campbell, R.H., Goldberg, D.E. next month.

Abstract:Genetic algorithms(GAs) are increasingly being applied to large scale problems. The traditional MPI-based parallel GAs do not scale very well. MapReduce is a powerful abstraction developed by Google for making scalable and fault tolerant applications. In this paper, we mould genetic algorithms into the the MapReduce model. We describe the algorithm design and implementation of GAs on Hadoop, the open source implementation of MapReduce. Our experiments demonstrate the convergence and scalability upto 105 variable problems. Adding more resources would enable us to solve even larger problems without any changes in the algorithms and implementation.

The draft of the paper can be downloaded as IlliGAL TR. No. 2009007. For more information see the IlliGAL technical reports web site.

Related posts:

  1. Scaling eCGA Model Building via Data-Intensive Computing
  2. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre
  3. Data-Intensive Computing for Competent Genetic Algorithms: A Pilot Study using Meandre

From Galapagos to Twitter: Darwin, Natural Selection, and Web 2.0

Yesterday I was visiting Monmouth College to participate on the Darwinpalooza which commemorates the 200th anniversary of Charles Darwin’s birth and the 150th anniversary of the publication of On the Origin of Species. After scratching my head about about what to present, I came out with quite a mix. You will find the abstract of […]

Related posts:

  1. Challenging lectures on-line at TED
  2. Dusting my Ph.D. thesis off
  3. Scaling Genetic Algorithms using MapReduce

Yesterday I was visiting Monmouth College to participate on the Darwinpalooza which commemorates the 200th anniversary of Charles Darwin’s birth and the 150th anniversary of the publication of On the Origin of Species. After scratching my head about about what to present, I came out with quite a mix. You will find the abstract of the talk below, as well as the slides I used.

Abstract: One hundred and fifty years have passed since the publication of Darwin’s world-changing manuscript “The Origins of Species by Means of Natural Selection”. Darwin’s ideas have proven their power to reach beyond the biology realm, and their ability to define a conceptual framework which allows us to model and understand complex systems. In the mid 1950s and 60s the efforts of a scattered group of engineers proved the benefits of adopting an evolutionary paradigm to solve complex real-world problems. In the 70s, the emerging presence of computers brought us a new collection of artificial evolution paradigms, among which genetic algorithms rapidly gained widespread adoption. Currently, the Internet has propitiated an exponential growth of information and computational resources that are clearly disrupting our perception and forcing us to reevaluate the boundaries between technology and social interaction. Darwin’s ideas can, once again, help us understand such disruptive change. In this talk, I will review the origin of artificial evolution ideas and techniques. I will also show how these techniques are, nowadays, helping to solve a wide range of applications, from life science problems to twitter puzzles, and how high performance computing can make Darwin ideas a routinary tool to help us model and understand complex systems.

Related posts:

  1. Challenging lectures on-line at TED
  2. Dusting my Ph.D. thesis off
  3. Scaling Genetic Algorithms using MapReduce

XCSLib: The XCS Classifier System Library

for IlliGAL Report No. 2009005:
The XCS Library (XCSLib) is an open source C++ library for
genetics-based machine learning and learning classifier systems. It
provides (i) several reusable components that can be employed to design
new learning paradigm…

for IlliGAL Report No. 2009005:

The XCS Library (XCSLib) is an open source C++ library for
genetics-based machine learning and learning classifier systems. It
provides (i) several reusable components that can be employed to design
new learning paradigms inspired to the learning classifier system
principles; and (ii) the implementation of two well-known and widely
used models of learning classifier systems.

Genetic Algorithms in Search, Optimization, and Machine Learning

Reviews from amazon.com:
David Goldberg’s Genetic Algorithms in Search, Optimization and Machine Learning is by far the bestselling introduction to genetic algorithms. Goldberg is one of the preeminent researchers in the field–he has published over 100 research articles on genetic algorithms and is a student of John Holland, the father of genetic algorithms–and his deep understanding […]

Reviews from amazon.com:
David Goldberg’s Genetic Algorithms in Search, Optimization and Machine Learning is by far the bestselling introduction to genetic algorithms. Goldberg is one of the preeminent researchers in the field–he has published over 100 research articles on genetic algorithms and is a student of John Holland, the father of genetic algorithms–and his deep understanding of the material shines through. The book contains a complete listing of a simple genetic algorithm in Pascal, which C programmers can easily understand. The book covers all of the important topics in the field, including crossover, mutation, classifier systems, and fitness scaling, giving a novice with a computer science background enough information to implement a genetic algorithm and describe genetic algorithms to a friend.

Goldberg, David E.

Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence)

This book focuses like a laser beam on one of the hottest topics in evolutionary computation over the last decade or so: estimation of distribution algorithms (EDAs). EDAs are an important current technique that is leading to breakthroughs in genetic and evolutionary computation and in optimization more generally. I’m putting Scalable Optimization via Probabilistic Modeling […]

This book focuses like a laser beam on one of the hottest topics in evolutionary computation over the last decade or so: estimation of distribution algorithms (EDAs). EDAs are an important current technique that is leading to breakthroughs in genetic and evolutionary computation and in optimization more generally. I’m putting Scalable Optimization via Probabilistic Modeling in a prominent place in my library, and I urge you to do so as well. This volume summarizes the state of the art at the same time it points to where that art is going. Buy it, read it, and take its lessons to heart.

David E Goldberg, University of Illinois at Urbana-Champaign

This book is an excellent compilation of carefully selected topics in estimation of distribution algorithms—search algorithms that combine ideas from evolutionary algorithms and machine learning. The book covers a broad spectrum of important subjects ranging from design of robust and scalable optimization algorithms to efficiency enhancements and applications of these algorithms. The book should be of interest to theoreticians and practitioners alike, and is a must-have resource for those interested in stochastic optimization in general, and genetic and evolutionary algorithms in particular.
John R. Koza, Stanford University

This edited book portrays population-based optimization algorithms and applications, covering the entire gamut of optimization problems having single and multiple objectives, discrete and continuous variables, serial and parallel computations, and simple and complex function models. Anyone interested in population-based optimization methods, either knowingly or unknowingly, use some form of an estimation of distribution algorithm (EDA). This book is an eye-opener and a must-read text, covering easy-to-read yet erudite articles on established and emerging EDA methodologies from real experts in the field.
Kalyanmoy Deb, Indian Institute of Technology Kanpur

This book is an excellent comprehensive resource on estimation of distribution algorithms. It can serve as the primary EDA resource for practitioner or researcher. The book includes chapters from all major contributors to EDA state-of-the-art and covers the spectrum from EDA design to applications. These algorithms strategically combine the advantages of genetic and evolutionary computation with the advantages of statistical, model building machine learning techniques. EDAs are useful to solve classes of difficult real-world problems in a robust and scalable manner.
Una-May O’Reilly, Massachusetts Institute of Technology

Machine-learning methods continue to stir the public’s imagination due to its futuristic implications. But, probability-based optimization methods can have great impact now on many scientific multiscale and engineering design problems, especially true with use of efficient and competent genetic algorithms (GA) which are the basis of the present volume. Even though efficient and competent GAs outperform standard techniques and prevent negative issues, such as solution stagnation, inherent in the older but more well-known GAs, they remain less known or embraced in the scientific and engineering communities. To that end, the editors have brought together a selection of experts that (1) introduce the current methodology and lexicography of the field with illustrative discussions and highly useful references, (2) exemplify these new techniques that dramatic improve performance in provable hard problems, and (3) provide real-world applications of these techniques, such as antenna design. As one who has strayed into the use of genetic algorithms and genetic programming for multiscale modeling in materials science, I can say it would have been personally more useful if this would have come out five years ago, but, for my students, it will be a boon.
Duane D. Johnson, University of Illinois at Urbana-Champaign